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Abstract: The non minimum phase systems are difficult to control because of RHP zero. This paper the robust 

controllers are designed for non-minimum phase systems based on algebraic approach and pole placement approach. 

The controller coefficients are calculated from general solutions of Diophantine equations. The robustness of the 

controller are verified in simulation in the mat lab environment to show the effectiveness of these designed controllers 

rejecting disturbances and also in alternating the noise characteristics. Time domain and frequency domain simulations 

are performed on the non-minimum phase systems. 
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I. INTRODUCTION 

 

A PID controller is a widely used feedback controller in industrial process in the market since 1939 and has remained 

as the mostly used controller in process control until today. However, the choice of weighting the three individual 

actions i.e. proportional, integral and derivative has been a problem. In this paper, Algebraic approach is adopted from 

algebraic approach (4),(5) and (6) as an effective tool for control design. This technique is based on the general 

solutions of Diophantine equations. The main advantage of this approach is that, the behaviour of the controller can be 

tunned by only one tunning parameter m>0. 

The other method used for the control design is the classical pole placement technique using polynomials. In this 

method the roots of the characteristics polynomial are placed in arbitrary locations. 
A system that has none or asymptotically stables zero dynamics is called minimum phase. Otherwise the system is non-

minimum phase .it is directly possible to conclude from the position of the invariant zeros to the stability of the zero 

dynamics. 

The response of a non minimum phase system to a step input has an “undershoot”. This means, if the output was 

initially zero and steady state output is positive, the output becomes first negative before changing direction and 

converging to its positive steady state value. Both algebraic approach and pole placement methods are used to derive 

the controller for these non-minimum phase systems. 

 

II. ALGEBRAIC CONTROL DESIGN IN PSR
 

 

2.1 Transfer function in 
PSR  

The RPS is the ring of proper and Hurwitz-stable rational functions. The properness of function means that the degree 

of polynomial in its denominator is higher or at least equal as the degree of polynomial in its numerator. The stability is 

ensured by location of all poles in left complex half plane. 
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The conversion of the polynomial representation to the RPS notation is simple. It is just the division of both numerator 

and denominator by the same stable polynomial of appropriate order. Therefore the transposition can take a form, 
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Where 0m  is a free parameter and max{deg ( ),deg ( )}n a s b s . The choice of multiple root m >0 brings into the 

synthesis the single real scalar tuning parameter which will be used as a tool influencing the properties of closed-loop 

control responses. 

 

2.2 Controller design 

This method supposes description of linear systems in RPS bounded with classical transfer Function by relation (2). 

The parameter 0m  can be used as a “tuning knob” for influencing of final control response. 

The general closed control loop with presence of disturbance signals can be realized according to fig.1. It should be 

noted that all functions and signals represented in fig.1.are considered to belong to RPS. 

 

 
Fig.1. General control loop 

 

This circuit can have separated feedback Cb(s)=Qc(s)/Pc(s) and feed forward Cf(s)=Rc(s)/ Pc(s)part (control system with 

two degrees of freedom – 2DOF, FBFW). 

In that event, assuming zero disturbances (n = v = 0), control signal u is generated by: 
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Signals w, n, v represent reference value, load disturbance in the input and disturbance in the output of the controlled 

plant, respectively. Usually, w and n are considered as step signal and disturbance v is modelled to have a harmonic 

shape. Hence, the denominators of these signals in PSR  are; 
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Where ω is angular frequency and 0m   
The first and the most important requirement is to ensure the stability of control loop from fig.1. Stabilizing controllers 

are given by ratio: 
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Where F is free in
PSR , 1COP BF  , COQ , COP  is some particular solution of Diophantine equation: 

1C CAP BQ 
 

        (6) 

 

2.3 Derivation of controller for Second order system 
 

Mathematical model 

The whole process of controller design, described above, can be illustrated by representative simple synthesis for 

second order controlled plant. 
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After transposition of all transfer functions in RPS the basic “stabilizing” Diophantine equation (6) can be written in the 

form. 
2
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After comparing left and right hand side terms of (7) the general solution of (6) can be expressed as, 
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Were obtained by straight forward calculations. The divisibility condition wF P is achieved for 0
0

0
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final solution is, 
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And the transfer function of feedback controller is given by 
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It is clear that (12) corresponds with the realistic PID controller 
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III. POLE PLACEMENT USING POLYNOMIAL METHOD 

 

Given a plant G(s), which may include the plant P(s) and feedback sensor F(s), can we find a controller C(s) that can 

place the roots of the characteristic polynomial is proscribed locations. This is known as the pole-placement problem. 

 

3.1 Degree requirements 

Suppose that we have a system described by the rational transfer function 
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We ask whether there exists a controller. 
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Such that, the roots of the characteristic polynomial can be placed in arbitrary locations. Note that in this case, the 

“given” data is in terms of the coefficients of the plant. The degree of the controller, m, as well as the specific controller 

coefficients, 0{ }m

i ip   and 0{ }m

i il  are to be chosen. Once we choose m, the characteristic polynomial is given by, 
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Which is an (n + m)th order polynomial. We can select (n+m) desired closed-loop pole locations, leading to a desired 

characteristic polynomial: 
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and use our free parameters (the li and pi) to satisfy 
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IV. COMPARISON OF ALGEBRAIC APPROACH AND POLE PLACEMENT METHOD WITH EXAMPLES 

 

Calculation of stabilizing PID controllers. 

Example 1: 
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Algebraic Approach: 

From eq.(7), we get 
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Now the controller is 



IJIREEICE IJIREEICE  ISSN (Online) 2321 – 2004 
ISSN (Print) 2321 – 5526 

 

International Journal of Innovative Research in 
Electrical, Electronics, Instrumentation and Control Engineering 

ISO 3297:2007 Certified 

Vol. 5, Issue 10, October 2017 
 

Copyright to IJIREEICE                                                   DOI 10.17148/IJIREEICE.2017.51010                                                                    67 

UGC Approved Journal 

20.3752 1.2522 1.0125
( )

( 1.3752)

s s
C s

s s

 


  
 

Pole Placement Method: 
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Here the order of the plant is 2n  , consider a controller of order 2m  , 

i.e. 
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With this controller the degree of the characteristic polynomial is four i.e ( 4)n m  which means that the desired 

characteristic polynomial is, 
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Thus, we seek parameters p1, p0, l1, and l0 such that 
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Clearly, this is possible by setting 
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SIMULATION RESULTS: 

 

 
Fig.(2). Time response of G(s) with ALG and PP 
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Fig.(3).Time response of G(s) under noise conditions 

 

 
Fig(4). Performance requirement on sensitivity function for G(s) 
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 1 0 1 01; 1; 2; 1b b a a   
 

 

Now for 1m  , we get, 
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Now the controller is 
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Fig(5). Performance requirement on complimentary sensitivity function for G(s) 

 

Pole Placement Method 
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Simulation result: 
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Fig.(6).Time response of G(s) with ALG and PP 

 

 
Fig.(7).Time response of G(s) under noise conditions. 

 

 
Fig(8). Performance requirement on sensitivity function for G(s) 
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Fig(9). Performance requirement on complimentary sensitivity function for G(s) 

 

CONCLUSIONS 
 

These design methods were developed for SISO continuous-time non-minimum phase systems. The proposed methods 

enables us to tune and influence the robustness and control behaviour of the plant. Compared to the classical pole 
placement method for design the controller, the algebraic approach has the better control responses. 
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